Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.01.551500

ABSTRACT

Reverse genetic systems have been used to introduce heterologous sequences into the rotavirus segmented double-stranded (ds)RNA genome, enabling the generation of recombinant viruses that express foreign proteins and possibly serve as vaccine vectors. Notably, insertion of SARS-CoV-2 sequences into the segment 7 (NSP3) RNA of simian SA11 rotavirus was previously shown to result in the production of recombinant viruses that efficiently expressed the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the S1 region of the SARS-CoV-2 spike protein. However, efforts to generate a similar recombinant (r) SA11 virus that efficiently expressed full-length S1 were less successful. In this study, we describe modifications to the S1-coding cassette inserted in the segment 7 RNA that allowed recovery of second-generation rSA11 viruses that efficiently expressed the ~120-kDa S1 protein. The ~120-kDa S1 products were shown to be glycosylated, based on treatment with endoglycosidase H, which reduced the protein to a size of ~80 kDa. Co-pulldown assays demonstrated that the ~120-kDa S1 proteins had affinity for the human ACE2 receptor. Although all the second-generation rSA11 viruses expressed glycosylated S1 with affinity for the ACE receptor, only the S1 product of one virus (rSA11/S1f) was appropriately recognized by anti-S1 antibody, suggesting the rSA11/S1f virus expressed an authentic form of S1. Possibly due to the presence of FLAG tags immediately upstream of their S1 signal peptides, the S1 products of the other viruses (rSA11/3fS1 and rSA11/3fS1-His) may have undergone defective glycosylation, impeding antibody binding. In summary, these results indicate that recombinant rotaviruses can serve as expression vectors of foreign glycosylated proteins, raising the possibility of generating rotavirus-based vaccines that can induce protective immune responses against enteric and mucosal viruses with glycosylated capsid components, including SARS-CoV-2.


Subject(s)
Rotavirus Infections
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.18.431835

ABSTRACT

Rotavirus, a segmented double-stranded RNA virus, is a major cause of acute gastroenteritis in young children. The introduction of live oral rotavirus vaccines has reduced the incidence of rotavirus disease in many countries. To explore the possibility of establishing a combined rotavirus-SARS-CoV-2 vaccine, we generated recombinant (r)SA11 rotaviruses with modified segment 7 RNAs that contained coding sequences for NSP3 and FLAG-tagged portions of the SARS-CoV-2 spike (S) protein. A 2A translational element was used to drive separate expression of NSP3 and the S product. rSA11 viruses were recovered that encoded the S-protein S1 fragment, N-terminal domain (NTD), receptor-binding domain (RBD), extended receptor-binding domain (ExRBD), and S2 core (CR) domain (rSA11/NSP3-fS1, -fNTD, -fRBD, -fExRBD, and -fCR, respectively). Generation of rSA11/fS1 required a foreign-sequence insertion of 2.2-kbp, the largest such insertion yet made into the rotavirus genome. Based on isopycnic centrifugation, rSA11 containing S sequences were denser than wildtype virus, confirming the capacity of the rotavirus to accommodate larger genomes. Immunoblotting showed that rSA11/-fNTD, -fRBD, -fExRBD, and -fCR viruses expressed S products of expected size, with fExRBD expressed at highest levels. These rSA11 viruses were genetically stable during serial passage. In contrast, rSA11/NSP3-fS1 failed to express its expected 80-kDa fS1 product, for unexplained reasons. Moreover, rSA11/NSP3-fS1 was genetically unstable, with variants lacking the S1 insertion appearing during serial passage. Nonetheless, these results emphasize the potential usefulness of rotavirus vaccines as expression vectors of portions of the SARS-CoV-2 S protein (e.g., NTD, RBD, ExRBD, and CR) with sizes smaller than the S1 fragment. ImportanceAmong the vaccines administered to children in the US and many other countries are those targeting rotavirus, a segmented double-stranded RNA virus that is a major cause of severe gastroenteritis. In this study, we have examined the feasibility of modifying the rotavirus genome by reverse genetics, such that the virus could serve as an expression vector of the SARS-CoV-2 spike protein. Results were obtained showing that recombinant rotaviruses can be generated that express domains of the SARS CoV-2 spike protein, including the receptor-binding domain (RBD), a common target of neutralizing antibodies produced in individuals infected by the virus. Our findings raise the possibility of creating a combined rotavirus-COVID-19 vaccine that could be used in place of current rotavirus vaccines.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL